Hydrolysis of polyphosphates and permeability changes in response to osmotic shocks in cells of the halotolerant alga dunaliella.
نویسندگان
چکیده
The effects of osmotic shocks on polyphosphates and on the vacuolar fluorescent indicator atebrin have been investigated to test whether acidic vacuoles in the halotolerant alga Dunaliella salina have a role in osmoregulation. Upshocks and downshocks induce different patterns of polyphosphate hydrolysis. Upshocks induce rapid formation of new components, tentatively identified as 5 or 6 linear polyphosphates, formed only after upshocks with NaCl and not with glycerol, indicative of compartmentation of Na(+) into the vacuoles. Conversely, downshocks induce a slower transient accumulation of tripolyphosphates, indicating activation of a different hydrolytic process within the vacuoles. Osmotic shocks do not lead to release of atebrin from acidic vacuoles, indicating that they do not induce a major intravacuolar alkalinization. However, osmotic shocks induce transient permeability changes measured by amine-induced atebrin release from vacuoles. Hypoosmotic shocks transiently increase the permeability (up to 20-fold), whereas hyperosmotic shocks induce a rapid drop in permeability. Electron micrographs of osmotically shocked cells also reveal transient changes in the surface and internal organelles of D. salina cells. It is suggested that hyperosmotic and hypoosmotic shocks induce different changes within acidic vacuoles and in the organization and/or composition of the plasma membrane in Dunaliella.
منابع مشابه
Changes in Dunaliella
Changes in phosphometabolites, following osmotic shock, were analyzed by two-dimensional thin layer chromatography, in extracts of the halotolerant alga DunalielIa salina in order to clarify the regulation of glycerol synthesis from starch. The experiments were carried out in wild-type and in osmotically defective mutant cells. It is demonstrated that hyperosmotic shock induces a decrease in fr...
متن کاملThe role of intracellular orthophosphate in triggering osmoregulation in the alga Dunaliella salina.
A new hypothesis is presented for the mechanism of metabolic response during osmoregulation in the alga Dunaliella salina. We propose that the osmotic response is initiated by differential volume changes of the cytoplasm and the chloroplast (observed using the electron microscope) which alter the cytoplasmic orthophosphate concentration. This triggers a flow through the Pi/triose-phosphate shut...
متن کامل31P and 13C-NMR Studies of the Phosphorus and Carbon Metabolites in the Halotolerant Alga, Dunaliella salina1
The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31Pand "3C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not signiflcantly affected by the salinity of the growth me...
متن کاملGene expression changes of collagen І and ІІІ in human skin fibroblast cells in effect of microalga Chlorella vulgaris extract and compared to vitamin C
Skin aging is a biological process that is due to the reduction of collagen production and increase of multiple enzymes, including matrix metalloproteinase (MMPS), which degrade collagen. Chlorella vulgaris is a marine microalga and its beneficial effects on the skin make it a proper ingredient to be used in anti-aging products. In this study, the effect of C. vulgaris extract comparing to vita...
متن کاملMolecular Clone and Expression of a NAD+-Dependent Glycerol-3-Phosphate Dehydrogenase Isozyme Gene from the Halotolerant alga Dunaliella salina
Glycerol is an important osmotically compatible solute in Dunaliella. Glycerol-3-phosphate dehydrogenase (G3PDH) is a key enzyme in the pathway of glycerol synthesis, which converts dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate. Generally, the glycerol-DHAP cycle pathway, which is driven by G3PDH, is considered as the rate-limiting enzyme to regulate the glycerol level under osmotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 97 3 شماره
صفحات -
تاریخ انتشار 1991